Thursday, November 26, 2009
Happy Thanksgiving -Turkey Day! Enjoy & Eat up! Hike Later!
Monday, November 23, 2009
Georgia Gould is having fun training! Super smart!
Tops two-woman battle with Gould
United States Under 23 Cyclo-cross champion Amy Dombroski (Primus Mootry) out-paced Georgia Gould (Luna) in a two-up sprint to win her second consecutive UCI race at the Whitmore’s Landscaping Super Cross Cup held in Southampton, New York.
I was at the Whitmore’s Landscaping Super Cross Cup last year to watch. This year marked the 10th and final round of the North American Cyclo-cross Trophy series. Canadian Natasha Elliott (Louis Garneau Chasseurs) won the overall title and was presented with a $1500 check plus a pink heavyweight champion belt handed over from last year’s winner Georgia Gould.
Course changes make for tougher racing
Not like last year, warm autumn temps made for a gorgeous day of cyclo-cross racing in Southampton, New York. The course ran opposite to the previous day introducing tougher undulations that wore down the elite women’s field quicker.
Meanwhile, the Georgia might be doing this for fun, but the battle continued up front with Gould putting on a show for the Southampton fans. She attacked Dombroski several times through the twists and turns and technical sections of the circuit that suited her world-class mountain bike skills.
Dombroski’s sprint was enough to steel few bike lengths ahead of Gould for her second consecutive win of the weekend.
Results
Result | |||
---|---|---|---|
1 | Amy Dombroski (USA) Schlamm p/b Clement&Primus Mootry | 0:37:12 | |
2 | Georgia Gould (USA) Luna Chix Having fun! | 0:00:06 | |
3 | Kelli Emmett (USA) Giant Factory Team | 0:01 |
Wednesday, November 18, 2009
Alex Grant is Wobble-naught fast!
Although La Ruta is an individual 4 day race retracing the route of Spanish explorer Juan De Cavallon, the experience is much more fullfilling if tackled as a team. Team Monavie-Cannondale demonstrated the greatest team performance in the 17 year history of La Ruta and along the way enhanced the experience of each individual rider.
Alex Grant 2nd Overall Open: We have known for a long time that Alex has what it takes to be one of the best mountain bike stage racers in the world. 2nd place overall at La Ruta and possibly the best performance by an American in the races 17 year history is only the beginning! His easy going nature and attention to detail help him thrive when the going gets tough and definitely are qualities that helped him conquer La Ruta and raise the level of the team!
Tuesday, November 17, 2009
Careful what you hear!
What does this have to do with cycling?
Possible benefits
In the literature described by Michael Yessis, there are many beneficial stretches that can improve range of motion (ROM) in athletes, especially runners. In his review,[2] he cites benefits of stretching:
- may improve ROM
- reduce risk of injury during activity
- prevent post-exercise muscle soreness
- slow delayed-onset muscle soreness (DOMS)
To gain these benefits, Yessis describes different forms of stretching along with their individual benefits. He suggests that one stretching exercise may not be enough to prevent all types of injury. Therefore, multiple stretching exercises should be used to gain the full effects of stretching.
Research by Sharman et al. sought to find what techniques elongate muscles through "proprioceptive neuromuscular facilitation" (PNF) stretching. They used around seventy sources to compile their data. In this review, PNF stretching yielded the greatest change in range of motion (ROM), especially short-term benefits. Ballistic stretching was also beneficial in comparison; however, PNF techniques emphasize active flexibility and therefore get better results. Reasoning behind the biomechanical benefit of PNF stretching points to muscular reflex relaxation found in the musculotendinous unit being stretched. More common findings in literature suggest that PNF benefits are due to influence on the joint where the stretch is felt.
[edit]Research and controversy
It has been suggested in some studies that overstretching or stretching to a point where pain is felt is inappropriate and detrimental. Effects on performance, both short and long-term, may include predisposition to injury and possible nerve damage (Yessis 8-18).
Other findings in research conclude that active stretching routines will reduce muscle-tendon viscosity and increase muscle compliancy and elasticity.
In sports activities where "there are little or no short-stretching cycles, (bicycling, jogging, etc.) stretching routines may be detrimental to athletic performance and have no effect on reducing injuries.[3]
In J. C. Andersen’s compilation of lower extremity stretching research, the effects of stretching before and after exercise were reviewed for evidence of muscle soreness. The seven articles referenced in his research came from sources such as MEDLINE and CINAHL. All data used came from studies that used static stretching programs and included average healthy participants between ages eighteen and forty.
The results of Andersen’s research are somewhat limited, due to the nature of the literature he selected; however, his findings suggest that stretching has no beneficial effects on injury reduction. Two to five percent reductions in injury levels lead Anderson to believe stretching routines will not have impact on injury prevention or post-exercise soreness. Also, the concept that stretching decreases risk of injury in active muscles is negated by claims in the literature reviewed. Stretching as observed in the research found increased complaisance in relaxed muscle groups. This idea, in conjunction with stretch tolerance and stretch variability, does not encourage stretching to prevent injuries. The conclusion claims more research is needed to finalize evidence on the benefits of stretching.[4]
A study constructed by Nelson et al. set out to find the correlation between pre-exercise static stretching and its effects on muscle strength endurance. Two experiments were designed to find the initial links between pre-exercise stretching and muscle endurance.
Results of the study found both stretching experiments to reduce effectiveness of muscle strength endurance by up to thirty percent. They suggest that pre-exercise stretching induces a fatigue-like state in muscles which would clearly inhibit performance if the muscle is not at full potential.
Smaller amounts of research included state that stretching may cause ischemia in muscles, which reduces oxygen levels and the ability to remove metabolic waste. Higher levels of metabolic waste create a catalyst that contracts muscles. This may cause muscle injury in individual performance. Other theories included claim active static stretching increases inflow of Ca2+ from extra cellular spaces into the muscles being stretched. The increase of Ca2+ reduced the muscle twitch tension by up to sixty percent. Reasoning behind this claims that increased levels of Ca2+ in resting muscles predisposes individuals to fatigue quicker than individuals who did not stretch.[5]
Popular beliefs around stretching versus research
For many, the idea of stretching means that injuries become less common and athletic performance is enhanced. Multifactorial claims in literature essentially discredit generally accepted ideas of stretching. In terms of genetic ability, some people are more flexible than others; this includes gender differences where women are generally more flexible than men. In this sense, some people are more predisposed to injuries than others. In addition to genetics, some studies found that stretching does not increase range of motion. Instead it increases individual stretch tolerance and may become detrimental to athletic performance. Still, other studies are nonspecific about what their research actually found. Some measure capsular mobility as opposed to the joint-muscle compliance.
Overwhelming research concludes that omitting pre-exercise stretching, especially for those who do not use short bursts of muscular activity, may result in a reduction in performance of up to five percent. At best, literature shows that weeks of regular stretching exercises, in conjunction with warm ups, may help athletes reduce injury by up to five percent. This small percentage may help athletes who use short bursts of energy such as sprinters improve their fifty-yard running speed by fractions of a second. Other sports that use continuous movements, such as cycling, should not expect the same benefits. Regardless of research, athletes, especially runners, continue to stretch, attempting to reduce injuries and increase their performance. More detailed studies and research are needed to find all possible neurological effects of stretching.[6]
Research by Weerapong et al. was designed to find the effects of stretching on the body. In their research, they used ninety-nine peer-reviewed and scholarly sources to compile their data. Their sources came from three online databases which included PubMed, SPORT Discuss, and ProQuest 5000 International. The criteria for research looked for average healthy participants where no bias was placed on age, gender or physical abilities. All claims considered in the research were picked if they researched the long and short-term effects of stretching, while suggesting what effects stretching had on events such as injury occurrence, sport performance, and muscle soreness.
Results of the study found that it is very common in literature to suggest stretching as a possible mechanism to prevent onset of injury and muscle soreness. This idea, however, while very common, does not specifically explain how stretching affects muscle properties on individual performance. Their findings suggest that common stretching methods, like static and ballistic stretches, decrease muscle performance and have inconclusive evidence to support the notion of injury reduction. Their research questions whether flexibility will reduce incidence of injury. A large number of their sources claim flexibility does not reduce incidence of injury; therefore, increasing range of motion is not needed. Their conclusion states that more research is needed to find the best stretching techniques that improve performance and reduce risk of injury.[7]
A study done by Witvrouw et al. was done to find what relationship stretching has with injury prevention. Over forty sources of relevant literature were used in their review. Initially the documentation of stretching claimed to promote better physical performance and reduce risk of injury. The number of suggested ideas in recent literature makes the relationship between stretching and its effects ambiguous.
Results of the research were two different findings,[3] each of which has a different consideration based on individual activity:
- They claim the reason behind conflicting data is due to the different levels of observed sports activity.
- In activities where stretch-shortening cycles (SSC) are more prevalent, such as sprinting and jumping, the muscle-tendon units need to store and use more elastic energy
- In activities which do not require as much SSC such as jogging, a more elastic muscle-tendon unit is not needed.
Sunday, November 15, 2009
Four of the Top 10!!! La Ruta
La Ruta quick update
November 14th, 2009 | Posted by Bart | Topic: News |La Ruta Open Men Final General Classification: Monavie-Cannondale with 4 of the top 10!!!
1 | MANUEL PRADO | Open | 05:43:35 | 03:45:58 | 04:02:54 | 04:37:01 | 18:09:28 |
2 | ALEX GRANT | Open | 06:01:41 | 03:51:35 | 04:01:34 | 04:37:02 | 18:31:52 |
3 | DEIBER ESQUIVEL | Open | 06:20:56 | 03:45:27 | 03:53:01 | 04:34:15 | 18:33:39 |
4 | MARC TRAITER | Open | 05:50:20 | 03:46:02 | 04:03:49 | 04:56:19 | 18:36:30 |
5 | JEREMIAH BISHOP | Open | 06:01:40 | 03:51:35 | 04:01:46 | 04:49:21 | 18:44:22 |
6 | BENJAMIN SONNTAG | Open | 06:19:13 | 04:11:36 | 04:01:33 | 04:34:32 | 19:06:54 |
7 | ROBERTO HERAS | Open | 05:53:52 | 03:51:35 | 04:37:16 | 04:45:25 | 19:08:08 |
8 | CARLOS ABELLAN OSSENBACH | Open | 06:27:53 | 04:17:23 | 04:23:10 | 04:39:08 | 19:47:34 |
9 | JUAN IGNACIO MENDEZ | Open | 06:17:17 | 04:08:17 | 04:19:10 | 05:06:08 | 19:50:52 |
10 | BART GILLESPIE | Open | 06:23:07 | 04:24:44 | 04:39:40 | 04:52:00 | 20:19:31 |
11 | CORY WALLACE | Open | 06:37:30 | 04:10:56 | 04:21:49 | 05:12:11 | 20:22:26 |
12 | ALBAN FIGUEROA | Open | 06:27:11 | 04:27:08 | 04:43:17 | 05:10:05 | 20:47:41 |
13 | ALFREDO ACOSTA GONZALEZ | Open | 06:45:22 | 04:36:46 | 04:29:57 | 05:09:14 | 21:01:19 |
14 | LUIS DIEGO SIBAJA | Open | 06:45:17 | 04:31:11 | 04:53:19 | 04:51:59 | 21:01:46 |
15 | KRIS JANSSENS | Open | 06:45:17 | 04:36:45 | 04:57:29 | 05:03:45 | 21:23:16 |
16 | BRAYAN ALDERS | Open | 07:36:23 | 04:48:48 | 04:52:25 | 05:20:00 | 22:37:36 |
17 | ESTEBAN PACHECO QUIROS | Open | 07:49:00 | 04:48:29 | 05:00:10 | 05:15:26 | 22:53:05 |
18 | SIMON TREMBLAY | Open | 08:06:50 | 04:52:02 | 05:00:08 | 05:14:35 | 23:13:35 |
19 | SAMUEL DE LA SOTTA | Open | 08:05:19 | 04:58:53 | 05:07:05 | 05:35:34 | 23:46:51 |
20 | OSCAR MARIN JIMENEZ | Open | 08:00:48 | 05:10:57 | 05:21:14 | 05:41:10 | 24:14:09 |
21 | EDUARD HERNANDEZ TEIXIDOR | Open | 07:53:19 | 05:49:00 | 05:22:11 | 05:32:53 | 24:37:23 |
22 | ARNOLDO LOAIZA | Open | 08:03:02 | 05:20:20 | 05:58:05 | 05:49:07 | 25:10:34 |
23 | DANIEL GARCIA MATAMOROS | Open | 08:49:36 | 05:35:49 | 06:15:42 | 05:45:28 | 26:26:35 |
24 | SEBASTIAN CONEJO | Open | 10:37:02 | 05:55:33 | 05:07:59 | 06:04:10 | 27:44:44 |